Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function

Author:

Basu Ratnadeep12,Oudit Gavin Y.23,Wang Xiuhua12,Zhang Liyan24,Ussher John R.24,Lopaschuk Gary D.24,Kassiri Zamaneh12

Affiliation:

1. Department of Physiology, University of Alberta,

2. Mazankowski Alberta Heart Institute, and

3. Division of Cardiology, Department of Medicine and

4. Departments of Pediatrics and Pharmacology, University of Alberta, Edmonton, Alberta, Canada

Abstract

Diabetic cardiomyopathy is an important contributor to diastolic and systolic heart failure. We examined the nature and mechanism of the cardiomyopathy in Akita ( Ins2WT/C96Y) mice, a model of genetic nonobese type 1 diabetes that recapitulates human type 1 diabetes. Cardiac function was evaluated in male Ins2WT/C96Yand their littermate control ( Ins2WT/WT) mice using echocardiography and tissue Doppler imaging, in vivo hemodynamic measurements, as well as ex vivo working heart preparation. At 3 and 6 mo of age, Ins2WT/C96Ymice exhibited preserved cardiac systolic function compared with Ins2WT/WTmice, as evaluated by ejection fraction, fractional shortening, left ventricular (LV) end-systolic pressure and maximum rate of increase in LV pressure in vivo, cardiac work, cardiac power, and rate-pressure product ex vivo. Despite the unaltered systolic function, Ins2WT/C96Ymice exhibited significant and progressive diastolic dysfunction at 3 and 6 mo of age compared with Ins2WT/WTmice as assessed by tissue and pulse Doppler imaging (E-wave velocity, isovolumetric relaxation time) and by in vivo hemodynamic measurements (LV end-diastolic pressure, time constant of LV relaxation, and maximum rate of decrease in LV pressure). We found no evidence of myocardial hypertrophy or fibrosis in the Ins2WT/C96Ymyocardium. Consistent with the lack of fibrosis, expression of procollagen-α type I, procollagen-α type III, and fibronectin were not increased in these hearts. Ins2WT/C96Yhearts showed significantly reduced sarcoplasmic reticulum Ca2+-ATPase 2a (cardiac sarcoplasmic reticulum Ca2+pump) levels, elevated β-myosin heavy chain isoform, increased long-chain fatty acids, and triacylglycerol with evidence of lipotoxicity, as indicated by a significant rise in ceramide, diacylglycerol, and lipid deposits in the myocardium. Consistent with metabolic perturbation, and a switch to fatty acid oxidation from glucose oxidation in Ins2WT/C96Yhearts, expression of mitochondrial long-chain acyl-CoA dehydrogenase and pyruvate dehydrogenase kinase isoform 4 were increased. Insulin treatment reversed the diastolic dysfunction, the elevated B-type natriuretic peptide and β-myosin heavy chain, and the reduced sarcoplasmic reticulum Ca2+-ATPase 2a levels with abolition of cardiac lipotoxicity. We conclude that early type 1 diabetic cardiomyopathy is characterized by diastolic dysfunction associated with lipotoxic cardiomyopathy with preserved systolic function in the absence of interstitial fibrosis and hypertrophy.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3