Endothelial dysfunction following prolonged sitting is mediated by a reduction in shear stress

Author:

Restaino Robert M.1,Walsh Lauren K.2,Morishima Takuma2,Vranish Jennifer R.3,Martinez-Lemus Luis A.14,Fadel Paul J.3,Padilla Jaume245

Affiliation:

1. Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri;

2. Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri;

3. Kinesiology, University of Texas-Arlington, Arlington, Texas;

4. Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and

5. Child Health, University of Missouri, Columbia, Missouri

Abstract

We and others have recently reported that prolonged sitting impairs endothelial function in the leg vasculature; however, the mechanism(s) remain unknown. Herein, we tested the hypothesis that a sustained reduction in flow-induced shear stress is the underlying mechanism by which sitting induces leg endothelial dysfunction. Specifically, we examined whether preventing the reduction in shear stress during sitting would abolish the detrimental effects of sitting on popliteal artery endothelial function. In 10 young healthy men, bilateral measurements of popliteal artery flow-mediated dilation were performed before and after a 3-h sitting period during which one foot was submerged in 42°C water (i.e., heated) to increase blood flow and thus shear stress, whereas the contralateral leg remained dry and served as internal control (i.e., nonheated). During sitting, popliteal artery mean shear rate was reduced in the nonheated leg (pre-sit, 42.9 ± 4.5 s−1; and 3-h sit, 23.6 ± 3.3 s−1; P < 0.05) but not in the heated leg (pre-sit, 38.9 ± 3.4 s−1; and 3-h sit, 63.9 ± 16.9 s−1; P > 0.05). Popliteal artery flow-mediated dilation was impaired after 3 h of sitting in the nonheated leg (pre-sit, 7.1 ± 1.4% vs. post-sit, 2.8 ± 0.9%; P < 0.05) but not in the heated leg (pre-sit: 7.3 ± 1.5% vs. post-sit, 10.9 ± 1.8%; P > 0.05). Collectively, these data suggest that preventing the reduction of flow-induced shear stress during prolonged sitting with local heating abolishes the impairment in popliteal artery endothelial function. Thus these findings are consistent with the hypothesis that sitting-induced leg endothelial dysfunction is mediated by a reduction in shear stress.

Funder

HHS | National Institutes of Health (NIH)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3