Impact of moderate‐intensity aerobic exercise in combined hypoxic and hot conditions on endothelial function

Author:

Morishima Takuma1ORCID,Yamaguchi Keiichi2,Goto Kazushige2ORCID

Affiliation:

1. Faculty of Liberal Arts and Sciences Chukyo University Aichi Japan

2. Graduate School of Sport and Health Science Ritsumeikan University Shiga Japan

Abstract

AbstractThere is no study that has investigated the impact of exercise in a combined hypoxic and hot environment on endothelial function. Therefore, we tested whether aerobic exercise in a combined hypoxic and hot conditions induces further enhancement of endothelial function. Twelve healthy males cycled at a constant workload (50% of their maximal oxygen uptake under normoxic/thermoneutral conditions) for 30 min in four different environments: exercise under normoxic condition (NOR: fraction of inspiratory oxygen or FiO2 = 20.9%, 20°C), exercise under hypoxic condition (HYP: FiO2 = 14.5%, 20°C), exercise under hot condition (HOT: FiO2 = 20.9%, 30°C), and exercise under combined hypoxia and hot conditions (HH: FiO2 = 14.5%, 30°C). Before, during, and after exercise, cardiovascular variables (e.g., heart rate, blood flow, and shear rate), blood variables, and endothelial function evaluated by flow‐mediated dilation (FMD) were assessed. Heart rates were significantly higher throughout the HH trial's experimental period than the other trials (p < 0.05). However, in the HH trial, brachial artery blood flow and shear rate did not differ from those in other trials after exercise. Plasma catecholamines (epinephrine, norepinephrine, and dopamine) elevations in response to exercise were significantly higher in the HH trial than in the other three trials (p < 0.05). No considerable differences were observed in FMD responses among trials before and after the exercise. In conclusion, aerobic exercise in a combined hot and hypoxic environment further activated sympathetic nervous activity but did not considerably enhance blood flow, shear rate, or endothelial function.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3