Author:
Shiga T.,Imaizumi K.,Harada N.,Sekiya M.
Abstract
An apparatus for determining the velocity of erythrocyte rouleaux formation was constructed, combining an inverted microscope, a transparent cone-plate viscometer, a TV image analyzer, and a computer. At lower shear rates, the overall process is the sedimentation and the rouleaux formation followed by the development of three-dimensional aggregates. The individual erythrocyte could be observed and the process was expressed by the time courses of the changes in the count and area of particles; taking the computed increment in the area/count, the rate of rouleaux formation could be estimated. The effects of shear rates, hematocrits, plasma proteins, and pH were quantified. The rate of rouleaux formation in autologous plasma increased by (1) lowering the shear rates (1.9 less than or equal to gamma less than or equal to 15 s-1),2) increasing the hematocrit (up to 0.6%), 3) adding human fibrinogen (up to 600 mg/dl) or gamma-globulin, and 4) increasing pH. The transformation to echinocytes or to stomatocytes decreased the rate of rouleaux formation. The pH effect was explained by the increase in mean corpuscular volume at lower pH rather than by the changes in the electrostatic repulsion or in the protein binding.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献