Thixo-elastoviscoplastic modeling of human blood

Author:

Spyridakis A.1ORCID,Moschopoulos P.1ORCID,Varchanis S.2ORCID,Dimakopoulos Y.1ORCID,Tsamopoulos J.1ORCID

Affiliation:

1. Department of Chemical Engineering, University of Patras 1 , Patras, Greece

2. Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology 2 , Onna, Okinawa 904-0495, Japan

Abstract

We propose an enhanced model for the rheological characterization of human blood that accounts for thixotropy, viscoelasticity, and yield-stress. Blood plasma is assumed to act as a Newtonian solvent. We introduce a scalar variable, λ, to macroscopically describe the structure of blood. The temporal evolution of λ is governed by an equation that accounts for aggregation of red blood cells and breakdown of rouleaux structures. We introduce a Gaussian function that qualitatively describes experimental findings on rouleaux restructuring and the expression that was proposed by Stephanou and Georgiou for the breakdown term. The constitutive equation for stresses is based on the elastoviscoplastic formalism by Saramito. However, the max term of the viscoplastic deformation rate has been replaced by a continuous function of λ to account for smooth solid-fluid transition, following the experimental evidence. The continuous yielding description provides improved rheological predictions, especially in small amplitude oscillatory shear. The model predicts finite viscous dissipation at small amplitude oscillation, as we would expect from a gel material-like human blood. Overall, it has nine adjustable parameters that are fitted simultaneously to experimental data by nonlinear regression. The model can accurately predict numerous flow conditions: steady shear, step shear, hysteresis loops, and oscillatory shear. We compare this model (TEVP 9) to our previous formulation for human blood (TEVP 11), and we show that the predictions of the new model are more accurate, despite using fewer parameters. We provide additional predictions for uniaxial elongation, which include finite normal stress difference, extensional hardening at large values of the extensional rate, and extensional thinning at extremely large extensional rates.

Funder

HFRI Project MOFLOWMAT

3rd Call for HFRI PhD Fellowships

HFRI Project CARE

Publisher

Society of Rheology

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3