A differing role of oxidative stress in the regulation of central and peripheral hemodynamics during exercise in heart failure

Author:

Witman Melissa A. H.12,McDaniel John134,Fjeldstad Anette S.5,Ives Stephen J.12,Zhao Jia6,Nativi Jose N.7,Stehlik Josef7,Walter Wray D.126,Richardson Russell S.126

Affiliation:

1. Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah;

2. Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah;

3. Department of Exercise Science, Kent State University, Kent, Ohio;

4. Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio;

5. Department of Neurology, University of Utah, Salt Lake City, Utah;

6. Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, Utah;

7. Department of Internal Medicine, Division of Cardiology, George E. Whalen Veterans Affairs Medical Center and University of Utah Medical Center, University of Utah School of Medicine, Salt Lake City, Utah

Abstract

This study sought to characterize the role of free radicals in regulating central and peripheral hemodynamics at rest and during exercise in patients with heart failure (HF). We examined cardiovascular responses to dynamic handgrip exercise (4, 8, and 12 kg at 1 Hz) following consumption of either a placebo or acute oral antioxidant cocktail (AOC) consisting of vitamin C, E, and α-lipoic acid in a balanced, crossover design. Central and peripheral hemodynamics, mean arterial pressure, cardiac index, systemic vascular resistance (SVR), brachial artery blood flow, and peripheral (arm) vascular resistance (PVR) were determined in 10 HF patients and 10 age-matched controls. Blood assays evaluated markers of oxidative stress and efficacy of the AOC. When compared with controls, patients with HF exhibited greater oxidative stress, measured by malondialdehyde (+36%), and evidence of endogenous antioxidant compensation, measured by greater superoxide dismutase activity (+83%). The AOC increased plasma ascorbate (+50%) in both the HF patients and controls, but significant systemic hemodynamic effects were only evident in the patients with HF, both at rest and throughout exercise. Specifically, the AOC reduced mean arterial pressure (−5%) and SVR (−12%) and increased cardiac index (+7%) at each workload. In contrast, peripherally, brachial artery blood flow and PVR (arm) were unchanged by the AOC. In conclusion, these data imply that SVR in patients with HF is, at least in part, mediated by oxidative stress. However, this finding does not appear to be the direct result of muscle-specific changes in PVR.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3