Sarcomere neutralization in inherited cardiomyopathy: small-molecule proof-of-concept to correct hyper-Ca2+-sensitive myofilaments

Author:

Thompson Brian R.1,Martindale Joshua1,Metzger Joseph M.1

Affiliation:

1. Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota

Abstract

The sarcomere is the functional unit of the heart. Alterations in sarcomere activation lead to disease states such as hypertrophic and restrictive cardiomyopathy (HCM/RCM). Mutations in many of the sarcomeric genes are causal for HCM/RCM. In most cases, these mutations result in increased Ca2+ sensitivity of the sarcomere, giving rise to altered systolic and diastolic function. There is emerging evidence that small-molecule sarcomere neutralization is a potential therapeutic strategy for HCM/RCM. To pursue proof-of-concept, W7 was used here because of its well-known Ca2+ desensitizer biochemical effects at the level of cardiac troponin C. Acute treatment of adult cardiac myocytes with W7 caused a dose-dependent (1–10 μM) decrease in contractility in a Ca2+-independent manner. Alkalosis was used as an in vitro experimental model of acquired heightened Ca2+ sensitivity, resulting in increased live cell contractility and decreased baseline sarcomere length, which were rapidly corrected with W7. As an inherited cardiomyopathy model, R193H cardiac troponin I (cTnI) transgenic myocytes showed significant decreased baseline sarcomere length and slowed relaxation that were rapidly and dose-dependently corrected by W7. Langendorff whole heart pacing stress showed that R193H cTnI transgenic hearts had elevated end-diastolic pressures at all pacing frequencies compared with hearts from nontransgenic mice. Acute treatment with W7 rapidly restored end-diastolic pressures to normal values in R193H cTnI hearts, supporting a sarcomere intrinsic mechanism of dysfunction. The known off-target effects of W7 notwithstanding, these results provide further proof-of-concept that small-molecule-based sarcomere neutralization is a potential approach to remediate hyper-Ca2+-sensitive sarcomere function.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3