Acetaminophen and low-flow myocardial ischemia: efficacy and antioxidant mechanisms

Author:

Merrill Gary F.1

Affiliation:

1. Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854

Abstract

In the current study, the cardioprotective efficacy of 0.35 mmol/l acetaminophen administered 10 min after the onset of a 20-min period of global, low-flow myocardial ischemia was investigated. Matched control hearts were administered an equal volume of Krebs-Henseleit physiological buffer solution (vehicle). In separate groups of hearts, the concentration-dependent, negative inotropic properties of hydrogen peroxide and the ability of acetaminophen to attenuate these actions, as well as the effects of acetaminophen on ischemia-reperfusion-mediated protein oxidation, were studied. Acetaminophen-treated hearts regained a significantly greater fraction of baseline, preischemia control function during reperfusion than vehicle-treated hearts. For example, contractility [rate of maximal developed pressure in the left ventricle (±dP/d t max)] after 10 min of reperfusion was 109 ± 24 and 42 ± 9 mmHg/s ( P < 0.05), respectively, in the two groups. The corresponding pressure-rate products were 1,840 ± 434 vs. 588 ± 169 mmHg · beats · min−1 ( P < 0.05). Acetaminophen attenuated peroxynitrite-mediated chemiluminescence in the early minutes of reperfusion (e.g., at 6 min, corresponding values for peak light production were ∼8 × 106 counts/min for vehicle vs. <4 × 106counts/min for acetaminophen, P < 0.05) and the negative inotropic effects of exogenously administered hydrogen peroxide (e.g., at 0.4 mmol/l hydrogen peroxide, pressure-rate products were ∼1.0 × 104 and 3.8 × 103 mmHg · beats · min−1in acetaminophen- and vehicle-treated hearts, respectively, P < 0.05). Ischemia-mediated protein oxidation was reduced by acetaminophen. The ability of acetaminophen to attenuate the damaging effects of peroxynitrite and hydrogen peroxide and to limit protein oxidation suggest antioxidant mechanisms are responsible for its cardioprotective properties during postischemia-reperfusion.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3