Author:
Parrish Diana C.,Gritman Kurt,Van Winkle Donna M.,Woodward William R.,Bader Michael,Habecker Beth A.
Abstract
The balance between norepinephrine (NE) synthesis, release, and reuptake is disrupted after acute myocardial infarction, resulting in elevated extracellular NE. Stimulation of sympathetic neurons in vitro increases NE synthesis and the synthetic enzyme tyrosine hydroxylase (TH) to a greater extent than it increases NE reuptake and the NE transporter (NET), which removes NE from the extracellular space. We used TGR(ASrAOGEN) transgenic rats, which lack postinfarct sympathetic hyperactivity, to test the hypothesis that increased cardiac sympathetic nerve activity accounts for the imbalance in TH and NET expression in these neurons after myocardial infarction. TH and NET mRNA levels were identical in the stellate ganglia of unoperated TGR(ASrAOGEN) rats compared with Sprague Dawley (SD) controls, but the threefold increase in TH and twofold increase in NET mRNA seen in the stellate ganglia of SD rats 1 wk after ischemia-reperfusion was absent in TGR(ASrAOGEN) rats. Similarly, the increase in TH and NET protein observed in the base of the SD ventricle was absent in the base of the TGR (ASrAOGEN) ventricle. Neuronal TH content was depleted in the left ventricle of both genotypes, whereas NET was unchanged. Basal heart rate and cardiac function were similar in both genotypes, but TGR(ASrAOGEN) hearts were more sensitive to the β-agonist dobutamine. Tyramine-induced release of endogenous NE generated similar changes in ventricular pressure and contractility in both genotypes, but postinfarct relaxation was enhanced in TGR(ASrAOGEN) hearts. These data support the hypothesis that postinfarct sympathetic hyperactivity is the major stimulus increasing TH and NET expression in cardiac neurons.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献