Affiliation:
1. Department of Surgery, University of Pittsburgh, Pennsylvania 15261,USA.
Abstract
We have constructed and performed initial validation of an innovative perfusion system that allows exposure of intact segments of vascular tissue to realistic physiological and hemodynamic environments ex vivo. Computer-controlled opening and closing of an in-line gate valve allows generation of arterial pressure waveforms. The control algorithm predicted resultant pressure waveforms with a high degree of accuracy (Pearson correlation coefficient > 0.97). To document vascular homeostasis ex vivo, vasomotor bioassays and morphological studies were performed. The bioassays consisted of injecting epinephrine (2 x 10(-3) mg/ml) into the perfusion system followed by acetylcholine (100 microM) while concurrently measuring vessel diameter with a laser micrometer, significant vasomotion was measured for canine carotid arteries (n = 4) bioassayed after 1, 24, and 48 h of perfusion (P < 0.03). Additionally, human saphenous vein segments were perfused for 24 h (n = 4) and viewed with laser confocal scanning microscopy and transmission electron microscopy; photomicrographs show typical vascular morphology. We conclude that the vascular perfusion system described herein is well suited for investigating the response of intact vascular tissue to hemodynamic variables.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献