Inosine-induced vasoconstriction is mediated by histamine and thromboxane derived from mast cells

Author:

Shepherd R. K.1,Duling B. R.1

Affiliation:

1. Department of Molecular Physiology and Biological Physics, Universityof Virginia School of Medicine, Charlottesville 22908, USA.

Abstract

Mast cell degranulation has been shown to release products that cause arteriolar constriction. We previously reported that two nucleosides, adenosine and inosine, cause vasoconstriction of isolated hamster cheek pouch arterioles by stimulating degranulation of periarteriolar mast cells. The objectives of the present study were to characterize the nucleoside-dependent vasoconstriction in vivo and to determine the mediator or mediators responsible. We examined the vasomotor effect of inosine on arterioles in the cheek pouches of anesthetized hamsters (70 mg/kg pentobarbital sodium) in the control situation and in the presence of receptor antagonists for histamine (H1), thromboxane A2 (Tx), and leukotrienes (LT). Most experiments were carried out using inosine applied once locally via micropipette to arterioles and observing the subsequent response. Over a range of inosine concentrations from 10(-5) to 10(-3) M in the pipette, we observed a dose-dependent increase in the incidence and magnitude of constriction. In addition, mast cell staining with ruthenium red was observed after stimulation with inosine, an indication of mast cell degranulation. Neither the H1, Tx, nor LT antagonist alone had a significant effect on the vasomotor response to inosine. However, combined H1 and Tx blockade significantly reduced the incidence and magnitude of inosine-induced constriction. These data establish that inosine-induced constriction occurs in vivo and support the role of mast cells in this response. Furthermore they suggest that multiple mediators, primarily histamine and thromboxane, are responsible for the observed constriction.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3