Histamine-dependent prolongation by aldosterone of vasoconstriction in isolated small mesenteric arteries of the mouse

Author:

Schjerning Jeppe1,Uhrenholt Torben R.1,Svenningsen Per1,Vanhoutte Paul M.23,Skøtt Ole1,Jensen Boye L.1,Hansen Pernille B. L.1

Affiliation:

1. Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark;

2. Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; and

3. Department of Clinical Pharmacy, King Saud University, Riyadh, Saudi Arabia

Abstract

In arterioles, aldosterone counteracts the rapid dilatation (recovery) following depolarization-induced contraction. The hypothesis was tested that this effect of aldosterone depends on cyclooxygenase (COX)-derived products and/or nitric oxide (NO) synthase (NOS) inhibition. Recovery of the response to high K+ was observed in mesenteric arteries of wild-type and COX-2−/− mice but it was significantly diminished in preparations from endothelial NOS (eNOS)−/− mice. Aldosterone pretreatment inhibited recovery from wild-type and COX-2−/− mice. The NO donor sodium nitroprusside (SNP) restored recovery in arteries from eNOS−/− mice, and this was inhibited by aldosterone. Actinomycin-D abolished the effect of aldosterone, indicating a genomic effect. The effect was blocked by indomethacin and by the COX-1 inhibitor valeryl salicylate but not by NS-398 (10−6 mol/l) or the TP-receptor antagonist S18886 (10−7 mol/l). The effect of aldosterone on recovery in arteries from wild-type mice and the SNP-mediated dilatation in arteries from eNOS−/− mice was inhibited by the histamine H2 receptor antagonist cimetidine. RT-PCR showed expression of mast cell markers in mouse mesenteric arteries. The adventitia displayed granular cells positive for toluidine blue vital stain. Confocal microscopy of live mast cells showed loss of quinacrine fluorescence and swelling after aldosterone treatment, indicating degranulation. RT-PCR showed expression of mineralocorticoid receptors in mesenteric arteries and in isolated mast cells. These findings suggest that aldosterone inhibits recovery by stimulation of histamine release from mast cells along mesenteric arteries. The resulting activation of H2 receptors decreases the sensitivity to NO of vascular smooth muscle cells. Aldosterone may chronically affect vascular function through paracrine release of histamine.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3