Bidirectional augmentation of heart rate regulation by autonomic nervous system in rabbits

Author:

Kawada T.1,Ikeda Y.1,Sugimachi M.1,Shishido T.1,Kawaguchi O.1,Yamazaki T.1,Alexander J.1,Sunagawa K.1

Affiliation:

1. Department of Cardiovascular Dynamics, National Cardiovascular CenterResearch Institute, Osaka, Japan.

Abstract

Although the characteristics of the static interaction between the sympathetic and parasympathetic nervous systems in regulating heart rate (HR) have been well established, how the dynamic interaction modulates the HR response remains unknown. We therefore investigated dynamic interaction by estimating the transfer function from nerve stimulation to HR using a band-limited Gaussian white-noise technique. The transfer function relating dynamic sympathetic stimulation to HR had characteristics of a second-order low-pass filter. Simultaneous tonic vagal stimulation at 5 and 10 Hz increased gain of the transfer function by 55.0 +/- 40.1 and 80.7 +/- 50.5%, respectively (P < 0.05). The transfer function from dynamic vagal stimulation to HR had characteristics of a first-order low-pass filter. Simultaneous tonic sympathetic stimulation at 5 and 10 Hz increased the gain by 18.2 +/- 17.9 and 24.1 +/- 18.0%, respectively (P < 0.05). Thus interaction augmented dynamic gain bidirectionally, even though it affected mean HR antagonistically. By virtue of this interaction, the autonomic nervous system appears to extend its dynamic range of operation.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Differential frequency-dependent reflex summation of the aortic baroreceptor afferent input;Pflügers Archiv - European Journal of Physiology;2023-05-23

2. Changes of the cardiac baroreflex bandwidth during postural challenges;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2023-04-01

3. Dynamic accentuated antagonism of heart rate control during different levels of vagal nerve stimulation intensity in rats;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2023-02-01

4. Cold Airflow Applied to the Ear Decreases Heart Rate;SN Comprehensive Clinical Medicine;2022-06-23

5. Spectral decomposition of heart rate variability using generalized harmonic analysis;Biomedical Signal Processing and Control;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3