Changes of the cardiac baroreflex bandwidth during postural challenges

Author:

Porta Alberto12ORCID,Gelpi Francesca1ORCID,Bari Vlasta12,Cairo Beatrice1ORCID,De Maria Beatrice3,Takahashi Anielle C. M.4,Catai Aparecida M.4,Colombo Riccardo5

Affiliation:

1. Department of Biomedical Sciences for Health, University of Milan, Milan, Italy

2. Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, Milan, Italy

3. Istituto di Ricovero e Cura a, Carattere Scientifico Istituti Clinici Scientifici Maugeri, Milan, Italy

4. Department of Physiotherapy, Federal University of São Carlos, São Carlos, Brazil

5. Department of Anesthesiology and Intensive Care Unit, Azienda SocioSanitaria Territoriale Fatebenefratelli Sacco, “Luigi Sacco” Hospital, Milan, Italy

Abstract

Baroreflex is commonly typified from heart period (HP) and systolic arterial pressure (SAP) spontaneous variations in the frequency domain mainly by estimating its sensitivity. However, an informative parameter linked to the rapidity of the HP response to SAP changes, such as the baroreflex bandwidth, remains unquantified. We propose a model-based parametric approach for estimating the baroreflex bandwidth from the impulse response function (IRF) of the HP-SAP transfer function (TF). The approach accounts explicitly for the action of mechanisms modifying HP regardless of SAP changes. The method was tested during graded baroreceptor unloading induced by head-up tilt (HUT) at 15°, 30°, 45°, 60°, and 75° (T15, T30, T45, T60, and T75) in 17 healthy individuals (age: 21–36 yr; 9 females and 8 males) and during baroreceptor loading obtained via head-down tilt (HDT) at −25° in 13 healthy men (age: 41–71 yr). The bandwidth was estimated as the decay constant of the monoexponential IRF fitting. The method was robust because the monoexponential fitting described adequately the HP dynamics following an impulse of SAP. We observed that 1) baroreflex bandwidth is reduced during graded HUT and this narrowing is accompanied by the reduction of the bandwidth of mechanisms that modify HP regardless of SAP changes and 2) baroreflex bandwidth is not affected by HDT but that of SAP-unrelated mechanisms becomes wider. This study provides a method for estimating a baroreflex feature that provides different information compared with the more usual baroreflex sensitivity while accounting explicitly for the action of mechanisms changing HP irrespective of SAP.

Funder

Italy Ministry of Health | Agenzia Italiana del Farmaco, Ministero della Salute

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3