Contractility-dependent curvilinearity of end-systolic pressure-volume relations

Author:

Burkhoff D.,Sugiura S.,Yue D. T.,Sagawa K.

Abstract

The shape of the end-systolic tension-length relationship (ESTLR) changes when contractile state is changed, whereas the end-systolic pressure-volume relationship (ESPVR) remains linear despite changes in contractility. To investigate this disparity, the ESPVR was determined with contractility altered extensively by dobutamine, BAY K 8644, nifedipine, lowering coronary blood flow, and the introduction of extrasystolic and postextrasystolic stimulations. The ESPVRs were fitted by nonlinear regression analysis to the parabolic equation Pes = aVes2 + bVes + c, where Pes is end-systolic pressure, Ves is end-systolic volume, and a, b, and c are parameters. There was a negative, statistically significant correlation between a, which serves as a shape index of the ESPVR, and E'max, the slope of the ESPVR in a low volume range. When E'max was large a was negative, indicating increasing concavity of the ESPVR to the volume axis at high contractility. When E'max was small a was positive, indicating convexity of the ESPVRs to the volume axis at low contractility. Within the average range of E'max between 3.4 and 7.8 mmHg/ml, however, the parabolic fit to the data was not statistically better than a linear fit over the range of volumes testable in the isolated heart. We conclude that the shape of the ESPVR measured in the isolated canine heart changes with contractile state. In accordance with previous interpretations of shape changes in the muscle ESTLR, these results are consistent with the existence of length-dependent activation of cardiac muscle in the intact heart.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 246 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3