Increased cross-bridge cycling rate in stunned myocardium

Author:

Gao Wei Dong,Dai Tieying,Nyhan Daniel

Abstract

Decreased Ca2+ responsiveness of the myofilaments underlies myocardial stunning. Given that cross-bridge cycling is a major determinant of myofilament behavior, we quantified cross-bridge cycling rate in stunned myocardium. After stabilization, rat hearts were subjected to 20 min of no-flow global ischemia and 30 min of reperfusion at 37°C. Control hearts were perfused continuously at 37°C for 60 min. Trabeculae were dissected and chemically skinned with 1% Triton X-100. The muscles were then activated with solutions of varied Ca2+ concentration ([Ca2+]). Force-[Ca2+] relations, rate of force redevelopment after release ( ktr), muscle stiffness ( km), and myofilament ATP consumption were determined. Maximal Ca2+-activated force (Fmax) was depressed in stunned myocardium (49 ± 5 vs. 82 ± 5 mN/mm2, P < 0.01). Western immunoblotting showed degradation of troponin I in stunned myocardium. The ktr at Fmax was significantly increased in stunned muscles (19.82 ± 2.74 vs. 13.19 ± 0.96 s−1, 22°C, P < 0.01; 7.49 ± 0.52 vs. 5.81 ± 0.54 s−1, 10°C, P < 0.05). The ratio of km measured at 100 Hz over that at 1 Hz, during Fmax, is lower in stunned muscles (8.22 ± 1.56 vs. 12.94 ± 0.71, P < 0.05). In comparison with km at rigor, km at Fmax is significantly lower in the stunned group (78.82 ± 6.11 vs. 93.27 ± 3.03%, P < 0.05). Myofilament ATP consumption at Fmax did not change in stunned muscles (5,901 ± 952 vs. 5,596 ± 972 pmol·μl−1·min−1, P = 0.49). These results show that cross-bridge cycling is increased in stunned myocardium. Such increases are likely the result of increased transition rate from force-generating states to non-force-generating states. Thus stunned myocardium still maintains ATP consumption in spite of lower force development, rationalizing the long-standing paradox of decreased force but unchanged oxygen consumption in the postischemic heart.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3