Left ventricular diastolic function of remodeled myocardium in dogs with pacing-induced heart failure

Author:

Solomon Steven B.12,Nikolic Srdjan D.3,Glantz Stanton A.2,Yellin Edward L.1

Affiliation:

1. Departments of Cardiothoracic Surgery and Biophysics and Physiology, Albert Einstein College of Medicine, Bronx, New York 10461;

2. Cardiovascular Research Institute and Department of Medicine, University of California, San Francisco 94143; and

3. Department of Cardiovascular and Thoracic Surgery, Research Institute of the Palo Alto Medical Foundation, Stanford University School of Medicine, Palo Alto, California 94306

Abstract

In patients with heart failure, decreased contractility resulting in high end-diastolic pressures and a restrictive pattern of left ventricular filling produces a decrease in early diastolic filling, suggesting a stiff ventricle. This study investigated the elastic properties of the myocardium and left ventricular chamber and the ability of the heart to utilize elastic recoil to facilitate filling during pacing-induced heart failure in the anesthetized dog. Elastic properties of the myocardium were determined by analyzing the myocardial stress-strain relation. Left ventricular chamber properties were determined by analyzing the pressure-volume relation using a logarithmic approach. Elastic recoil was characterized using a computer-controlled mitral valve occluder to prevent transmitral flow during diastole. We conclude that, during heart failure, the high end-diastolic pressures suggestive of a stiff ventricle are due not to stiffer myocardium but to a ventricle whose chamber compliance characteristics are changed due to geometric remodeling of the myocardium. The restrictive filling pattern is a result of the ventricle being forced to operate on the stiff portion of the diastolic pressure-volume relation to maintain cardiac output. Slowed relaxation and decreased contractility result in an inability of the heart to contract to an end-systolic volume below its diastolic equilibrium volume. Thus the left ventricle cannot utilize elastic recoil to facilitate filling during heart failure.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3