Ionic diffusion in transverse tubules of cardiac ventricular myocytes

Author:

Shepherd Neal1,McDonough Holly B.1

Affiliation:

1. Veterans Affairs Medical Center, Durham, North Carolina 27705

Abstract

We have estimated the rate of diffusion of calcium ions in the transverse tubules of isolated cardiocytes by recording changes in peak calcium current ( I Ca) caused by rapid changes of the extracellular calcium concentration ([Ca]o) at various intervals just preceding activation of I Ca. Isolated ventricular cells of guinea pig heart and atrial cells from rabbit heart were voltage-clamped (whole cell patch), superfused at a high flow rate, and stimulated continuously with depolarizing pulses (0.5 Hz, 200- or 20-ms pulses from a holding potential of −45 or −75 mV to 0 mV). In ventricular cells, the change in peak I Ca following a sudden change of [Ca]oincreased rapidly as the delay between the solution change and depolarization was increased, up to a delay of ∼75 ms [time constant (τ) ≈ 20 ms, 30–40% of total current change), and then increased more slowly (τ ≈ 200 ms, 60–70% of total current change); 400–500 ms were needed to achieve 90% of the total current increase. In atrial cells, a clear separation into two phases was not possible and 90% of the current change occurred within 85 ms. The slow phase of current change, which was unique to the ventricular cells, presumably reflects the slow equilibration of ions between the bulk perfusate and the lumina of the transverse tubules. If the lengths of the transverse tubules were equal to the cell thickness, the slow rate of change of current would be consistent with an apparent diffusion coefficient for calcium ions of 0.95 × 10−6cm2/s, considerably smaller than the value in bulk solution (7.9 × 10−6cm2/s). Most likely, this discrepancy is due to a high degree of tortuosity in the transverse tubular system in guinea pig ventricular cells or possibly to ion binding sites within the tubular membranes and glycocalyx.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3