Fraction of the T-Tubular Membrane as an Important Parameter in Cardiac Cellular Electrophysiology: A New Way of Estimation

Author:

Švecová Olga,Bébarová Markéta,Šimurdová Milena,Šimurda Jiří

Abstract

The transverse-axial tubular system (t-tubules) plays an essential role in excitation-contraction coupling in cardiomyocytes. Its remodelling is associated with various cardiac diseases. Numerous attempts were made to analyse characteristics essential for proper understanding of the t-tubules and their impact on cardiac cell function in health and disease. The currently available methodical approaches related to the fraction of the t-tubular membrane area produce diverse data. The widely used detubulation techniques cause irreversible cell impairment, thus, distinct cell samples have to be used for estimation of t-tubular parameters in untreated and detubulated cells. Our proposed alternative method is reversible and allows repetitive estimation of the fraction of t-tubular membrane (ft) in cardiomyocytes using short-term perfusion of the measured cell with a low-conductive isotonic sucrose solution. It results in a substantial increase in the electrical resistance of t-tubular lumen, thus, electrically separating the surface and t-tubular membranes. Using the whole-cell patch-clamp measurement and the new approach in enzymatically isolated rat atrial and ventricular myocytes, a set of data was measured and evaluated. The analysis of the electrical equivalent circuit resulted in the establishment of criteria for excluding measurements in which perfusion with a low conductivity solution did not affect the entire cell surface. As expected, the final average ft in ventricular myocytes (0.337 ± 0.017) was significantly higher than that in atrial myocytes (0.144 ± 0.015). The parameter ft could be estimated repetitively in a particular cell (0.345 ± 0.021 and 0.347 ± 0.023 in ventricular myocytes during the first and second sucrose perfusion, respectively). The new method is fast, simple, and leaves the measured cell intact. It can be applied in the course of experiments for which it is useful to estimate both the surface and t-tubular capacitance/area in a particular cell.

Funder

Ministerstvo Školství, Mládeže a Tělovýchovy

Ministerstvo Zdravotnictví Ceské Republiky

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3