Affiliation:
1. Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2A6
Abstract
From the role of oxidative stress in cardiac dysfunction, we investigated the effect of H2O2, an activated species of oxygen, on β-adrenoceptors, G proteins, and adenylyl cyclase activities. Rat heart membranes were incubated with different concentrations of H2O2before the biochemical parameters were measured. Both the affinity and density of β1-adrenoceptors were decreased, whereas the density of the β2-adrenoceptors was decreased and the affinity was increased by 1 mM H2O2. Time- and concentration-dependent biphasic changes in adenylyl cyclase activities in the absence or presence of isoproterenol were observed when membranes were incubated with H2O2; however, activation of the enzyme by isoproterenol was increased or unaltered. The adenylyl cyclase activities in the absence or presence of forskolin, NaF, and Gpp(NH)p were depressed by H2O2. Catalase alone or in combination with mannitol was able to significantly decrease the magnitude of alterations due to H2O2. The cholera toxin-stimulated adenylyl cyclase activity and ADP ribose labeling of Gs proteins were decreased by treatment with 1 mM H2O2, whereas Gi protein activities, as reflected by pertussis toxin-stimulation of adenylyl cyclase and ADP ribosylation, were unaltered. The Gs and Gi protein immunoreactivities, estimated by labeling with respective antibodies, indicate a decrease in binding to the 45-kDa band of Gs protein, whereas no change in the binding of antibodies to the 52-kDa band of Gs protein or the 40-kDa subunit of Gi protein was evident when the membranes were treated with 1 mM H2O2. These results suggest that H2O2in high concentrations may attenuate the β-adrenoceptor-linked signal transduction in the heart by changing the functions of Gs proteins and the catalytic subunit of the adenylyl cyclase enzyme.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献