Modification of cardiac β-adrenoceptor mechanisms by H2O2

Author:

Persad Sujata1,Rupp Heinz1,Jindal Rashi1,Arneja Jugpal1,Dhalla Naranjan S.1

Affiliation:

1. Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2A6

Abstract

From the role of oxidative stress in cardiac dysfunction, we investigated the effect of H2O2, an activated species of oxygen, on β-adrenoceptors, G proteins, and adenylyl cyclase activities. Rat heart membranes were incubated with different concentrations of H2O2before the biochemical parameters were measured. Both the affinity and density of β1-adrenoceptors were decreased, whereas the density of the β2-adrenoceptors was decreased and the affinity was increased by 1 mM H2O2. Time- and concentration-dependent biphasic changes in adenylyl cyclase activities in the absence or presence of isoproterenol were observed when membranes were incubated with H2O2; however, activation of the enzyme by isoproterenol was increased or unaltered. The adenylyl cyclase activities in the absence or presence of forskolin, NaF, and Gpp(NH)p were depressed by H2O2. Catalase alone or in combination with mannitol was able to significantly decrease the magnitude of alterations due to H2O2. The cholera toxin-stimulated adenylyl cyclase activity and ADP ribose labeling of Gs proteins were decreased by treatment with 1 mM H2O2, whereas Gi protein activities, as reflected by pertussis toxin-stimulation of adenylyl cyclase and ADP ribosylation, were unaltered. The Gs and Gi protein immunoreactivities, estimated by labeling with respective antibodies, indicate a decrease in binding to the 45-kDa band of Gs protein, whereas no change in the binding of antibodies to the 52-kDa band of Gs protein or the 40-kDa subunit of Gi protein was evident when the membranes were treated with 1 mM H2O2. These results suggest that H2O2in high concentrations may attenuate the β-adrenoceptor-linked signal transduction in the heart by changing the functions of Gs proteins and the catalytic subunit of the adenylyl cyclase enzyme.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3