Affiliation:
1. Division of Cardiology, Department of Medicine, and
2. Department of Radiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
Abstract
Subcellular compartmentalization of energy stores to support different myocardial processes has been exemplified by the glycolytic control of the ATP-sensitive K+ channel. Recent data suggest that the control of intracellular sodium (Nai) may also rely on glycolytically derived ATP; however, the degree of this dependence is unclear. To examine this question, isolated, perfused rat hearts were exposed to hypoxia, to selectively inhibit oxidative metabolism, or iodoacetate (IAA, 100 μmol/l), to selectively inhibit glycolysis. Nai and myocardial high-energy phosphate levels were monitored using triple-quantum-filtered (TQF)23Na and31P magnetic resonance spectroscopy, respectively. The effects of ion exchange mechanisms (Na+/Ca2+, Na+/H+) on Nai were examined by pharmacological manipulation of these channels. Nai, as monitored by shift reagent-aided TQF 23Na spectral amplitudes, increased by ∼220% relative to baseline after 45 min of perfusion with IAA, with or without rapid pacing. During hypoxia, Nai increased by ∼200% during rapid pacing but did not increase in unpaced hearts or when the Na+/H+exchange blocker ethylisopropylamiloride (EIPA, 10 μmol/l) was used. Neither EIPA nor a low-Ca2+perfusate (50 μmol/l) could prevent the rise in Nai during perfusion with IAA. Myocardial function and high-energy phosphate stores were preserved during inhibition of glycolysis with IAA and continued oxidative metabolism. These results suggest that glycolysis is required for normal Na+ homeostasis in the perfused rat heart, possibly because of preferential fueling of Na-K-adenosinetriphosphatase by glycolytically derived ATP.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献