Is there a causal link between intracellular Na elevation and metabolic remodelling in cardiac hypertrophy?

Author:

Aksentijevic Dunja12,O'Brien Brett A.23,Eykyn Thomas R.3,Shattock Michael J.2

Affiliation:

1. School of Biological and Chemical Sciences, Queen Mary University of London, G.E. Fogg Building, London, U.K.

2. King's College London, School of Cardiovascular and Medical Sciences, British Heart Foundation Centre of Research Excellence, St Thomas Hospital, London, U.K.

3. Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas’ Hospital, London, U.K.

Abstract

Alterations in excitation–contraction coupling and elevated intracellular sodium (Nai) are hallmarks of pathological cardiac remodelling that underline contractile dysfunction. In addition, changes in cardiac metabolism are observed in cardiac hypertrophy and heart failure (HF) that lead to a mismatch in ATP supply and demand, contributing to poor prognosis. A link between Nai and altered metabolism has been proposed but is not well understood. Many mitochondrial enzymes are stimulated by mitochondrial calcium (Camito) during contraction, thereby sustaining production of reducing equivalents to maintain ATP supply. This stimulation is thought to be perturbed when cytosolic Nai is high due to increased Camito efflux, potentially compromising ATPmito production and leading to metabolic dysregulation. Increased Nai has been previously shown to affect Camito; however, whether Nai elevation plays a causative role in energetic mismatching in the hypertrophied and failing heart remains unknown. In this review, we discuss the relationship between elevated Nai, NaK ATPase dysregulation and the metabolic phenotype in the contexts of pathological hypertrophy and HF and their link to metabolic flexibility, capacity (reserve) and efficiency that are governed by intracellular ion homeostasis. The development of non-invasive analytical techniques using nuclear magnetic resonance able to probe metabolism in situ in the functioning heart will enable a better understanding of the underlying mechanisms of Nai overload in cardiac pathophysiology. They will lead to novel insights that help to explain the metabolic contribution towards these diseases, the incomplete rescue observed with current therapies and a rationale for future energy-targeted therapies.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3