Fluorescence measurement of calcium transients in perfused rabbit heart using rhod 2

Author:

Del Nido Pedro J.1,Glynn Paul1,Buenaventura Percival1,Salama Guy2,Koretsky Alan P.3

Affiliation:

1. Department of Cardiac Surgery, Harvard Medical School, Boston, Massachusetts 02115;

2. Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh 15261; and

3. Department of Biological Sciences, Science and Technology Center for Light Microscopy and Biotechnology, and the Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

Abstract

Surface fluorescence spectroscopy of the beating heart to measure cytosolic calcium has been limited by the need to use ultraviolet excitation light for many of the commonly used calcium indicators. Ultraviolet light in the heart produces a high level of background fluorescence and is highly absorbed, limiting tissue penetration. Visible wavelength fluorescence dyes such as rhod 2 are available; however, the lack of spectral shift with calcium binding precludes the use of ratio techniques to account for changes in cytosolic dye concentration. We have developed a method for in vivo quantitation of cytosolic rhod 2 concentration that in conjunction with calcium-dependent fluorescence measurements permits estimation of cytosolic calcium levels in perfused rabbit hearts. Reflective absorbance of excitation light by rhod 2 loaded into myocardium was used as an index of dye concentration and the ratio of fluorescence intensity to absorbance as a measure of cytosolic calcium concentration. Endothelial cell loading of rhod 2 was found to be minimal (<5%), and dye leak rate out of the cytosol was slow, with ∼5% loss of dye fluorescence occurring between 10 and 30 min after dye loading. Rhod 2 loading into subcellular compartments, determined by manganese quenching, was also minimal (<5%). The dissociation constant of rhod 2 for calcium was measured in vitro to be 500 nM, and this value increased to 710 nM in the presence of 0.5 mM myoglobin. On the basis of this value and in vivo fluorescence measurements, cytosolic calcium concentration in the rabbit heart was found to be 229 ± 90 nM at end diastole and 930 ± 130 nM at peak systole, with peak fluorescence preceding peak ventricular pressure by ∼40 ms. This technique should facilitate detailed analysis of calcium transients from the whole heart.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3