Exposure of energy-depleted rat trabeculae to low pH improves contractile recovery: role of calcium

Author:

van Hardeveld C.1,Schouten V. J.1,Muller A.1,van der Meulen E. T.1,Elzinga G.1

Affiliation:

1. Laboratory for Physiology, Vrije Universiteit, Amsterdam, The Netherlands.

Abstract

The beneficial effect of low pH during cardiac ischemia on reperfusion injury has often been attributed to its energy-saving effect due to inhibition of contraction. The role of low pH on Ca2+ accumulation and muscle tension was assessed in energy-depleted tissue by changing the pH of the medium from 7.4 to 6.2 at onset of rigor development during metabolic inhibition (MI), i.e., in the energy-depleted phase. Cytosolic free Ca2+ ([Ca2+]i) and intracellular H+ (pHi) were measured in rat trabeculae at 20 degrees C with fura 2 and 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein, respectively, and tension was recorded. The preparations were energy depleted by stimulation at 1 Hz in glucose-free Tyrode solution with 2 mM NaCN. Rigor developed within 20 min, indicating energy depletion. Resting [Ca2+]i was followed during 50 min (group I) or 100 min (group II) of rigor, and recovery was followed for 60 min in glucose-containing Tyrode solution at 0.2-Hz stimulation. Resting [Ca2+]i rose within 50 min (group I) but stabilized in the 50- to 100-min period (group II). All preparations from group I (n = 5) resumed contraction in the recovery period but in group II (n = 10) 70% failed to recover, and [Ca2+]i remained elevated compared with those that recovered. An extracellular pH of 6.2, resulting in similar pHi, from onset of rigor development (group III) led to only a modest rise in [Ca2+]i during the 100-min rigor period, and all preparations resumed contraction after approximately 3 min in normal medium. ATP was very low in all groups at the end of MI but was still significantly lower in group II than in groups I and III. A beneficial energy-sparing effect of low pH during the rigor phase can therefore not be excluded. We conclude that 1) the capacity of trabeculae to recover from MI depends on the time period and magnitude of the [Ca2+]i rise in the energy-depleted phase and 2) low pH in energy-depleted trabeculae protects against Ca overload, improving recovery after normalization of perfusion conditions.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3