Regional differences in constitutive and induced ICAM-1 expression in vivo

Author:

Panes J.1,Perry M. A.1,Anderson D. C.1,Manning A.1,Leone B.1,Cepinskas G.1,Rosenbloom C. L.1,Miyasaka M.1,Kvietys P. R.1,Granger D. N.1

Affiliation:

1. Department of Physiology, Louisiana State University Medical Center, Shreveport 71130, USA.

Abstract

The aim of the present study was to characterize and compare the expression of intercellular adhesion molecule 1 (ICAM-1) on unstimulated and endotoxin-challenged endothelial cells in different tissues of the rat. ICAM-1 expression was measured using 125I-labeled anti-rat ICAM-1 monoclonal antibody (MAb) and an isotype-matched control MAb labeled with 131I (to correct for nonspecific accumulation of the binding MAb). Under baseline conditions, ICAM-1 MAb binding was observed in all organs. The binding of 125I-ICAM-1 MAb varied widely among organs, with the largest accumulation (per g tissue) in the lung, followed by heart (1/30th of lung activity), splanchnic organs (1/50th of lung activity), thymus (1/100th of lung activity), testes (1/300th of lung activity), and skeletal muscle (1/800th of lung activity). Endotoxin induced an increase in ICAM-1 MAb binding in all organs except the spleen. Endotoxin-induced upregulation of ICAM-1 was greatest in heart and skeletal muscle (5- to 10-fold), whereas the remaining organs exhibited a two- to fourfold increase in ICAM-1 expression. Maximal upregulation of ICAM-1 occurred at 9-12 h after endotoxin administration. A dose-dependent increase in ICAM-1 expression was elicited by 0.1-10 microgram/kg, with higher doses (up to 5 mg/kg) producing no further increment. Induction of ICAM-1 mRNA after endotoxin was observed in all tissues examined (lung, heart, intestine), peaked at 3 h, and then rapidly returned to control levels. These findings indicate that ICAM-1 is constitutively expressed on vascular endothelium in all organs of the rat and that there are significant regional differences in the magnitude and time course of endotoxin-induced ICAM-1 expression.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 204 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3