Relationship between 5-aminoimidazole-4-carboxamide-ribotide and AMP-activated protein kinase activity in the perfused mouse heart

Author:

Zhang Li,Frederich Markus,He Huamei,Balschi James A.

Abstract

AMP-activated protein kinase (AMPK) is a cellular energy sensor whose activity responds to AMP concentration ([AMP]). An agent that activates AMPK in cells is 5-aminoimidazole-4-carboxamide-1-riboside (AICA-riboside). Phosphorylated AICA-riboside or AICA-ribotide (ZMP) is an AMP analog. It is generally assumed that ZMP accumulation does not alter [AMP]. Additionally, the effect of AICA-riboside on AMPK activity of the heart is uncertain. Two hypotheses were tested in the isolated mouse heart: 1) sufficient ZMP concentration ([ZMP]) forms to increase AMPK activity, and 2) [ZMP] accumulation increases [AMP]. Perfusion of isolated mouse hearts with Krebs-Henseleit buffer containing 0.15–2 mM AICA-riboside concentration resulted in [ZMP] of 2–8 mM. ZMP accumulation reduced phosphocreatine concentration, which increased cytosolic [AMP]. In hearts with [ZMP] less than ∼3 mM, in vivo AMPK allosteric activity effects of ZMP were observed; AMPK phosphorylation and [AMP] were not increased. With [ZMP] between 3 and 5 mM, in vitro AMPK activity and phosphorylation increased with unchanged [AMP]. This occurred in hearts perfused with 0.25 mM AICA-riboside for 48 min and 0.5 mM AICA-riboside for 24 min. The [ZMP] resulting in 50% AMPK activity (covalent phosphorylation of AMPK) was 4.1 ± 0.6 mM. Hearts with [ZMP] >5 mM displayed increased [AMP] and AMPK activity that was not different from hearts with similar [AMP] with no [ZMP]; the half-maximal activity of AMP was 5.6 ± 1.6 μM. Thus, in mouse hearts, AICA-riboside was metabolized to [ZMP] adequately to increase AMPK activity. Higher [ZMP] also increased cytosolic [AMP], which affects AMPK activity.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3