AICAR prevents doxorubicin-induced heart failure in rats by ameliorating cardiac atrophy and improving fatty acid oxidation

Author:

Choksey Anurag,Thackray Benjamin D.,Ball Vicky,Ha Lea Hong Tuan,Sharma Eshita,Kennedy Brett W. C.,Carter Ryan D.,Broxholme John,Murphy Michael P,Heather Lisa C,Tyler Damian J,Timm Kerstin NORCID

Abstract

AbstractDoxorubicin (DOX) is a widely used chemotherapeutic agent that can cause serious cardiotoxic side effects, leading to functional cardiac decline and ultimately, congestive heart failure (HF). Impaired mitochondrial function and energetics are thought to be key factors driving progression into HF. We have previously shown in a rat model of chronic intravenous DOX-administration that heart failure with reduced ejection fraction correlates with mitochondrial loss and dysfunction. Adenosine monophosphate-dependent kinase (AMPK) is a cellular energy sensor, regulating mitochondrial biogenesis and oxidative metabolism, including fatty acid oxidation. We hypothesized that AMPK activation could restore mitochondrial number and function and therefore be a novel cardioprotective strategy for the prevention of DOX-HF. We therefore set out to assess whether 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an activator of AMPK, could prevent cardiac functional decline in this clinically relevant rat model of DOX-HF. In line with our hypothesis, AICAR improved cardiac systolic function. We show that this could be due to normalisation of substrate supply to the heart, as AICAR prevented DOX-induced dyslipidaemia. AICAR furthermore improved cardiac mitochondrial fatty acid oxidation, despite no increase in mitochondrial number. In addition, we found that AICAR prevented excessive myocardial atrophy, and RNAseq analysis showed that this may be due to normalisation of protein synthesis pathways, which are impaired in DOX-treated rat hearts. Taken together, these results show promise for use of AICAR as a cardioprotective agent in DOX-HF to both preserve cardiac mass and improve cardiac function.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3