Intrathecal PACAP-38 causes increases in sympathetic nerve activity and heart rate but not blood pressure in the spontaneously hypertensive rat

Author:

Farnham Melissa M. J.1,Inglott Melissa A.1,Pilowsky Paul M.1

Affiliation:

1. Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia

Abstract

The rostral ventrolateral medulla contains presympathetic neurons that project monosynaptically to sympathetic preganglionic neurons (SPN) in the spinal cord and are essential for the tonic and reflex control of the cardiovascular system. SPN directly innervate the adrenal medulla and, via postganglionic axons, affect the heart, kidneys, and blood vessels to alter sympathetic outflow and hence blood pressure. Over 80% of bulbospinal, catecholaminergic (C1) neurons contain pituitary adenylate cyclase-activating polypeptide (PACAP) mRNA. Activation of PACAP receptors with intrathecal infusion of PACAP-38 causes a robust, prolonged elevation in sympathetic tone. Given that a common feature of most forms of hypertension is elevated sympathetic tone, this study aimed to determine in the spontaneously hypertensive rat (SHR) and the Wistar Kyoto rat (normotensive control) 1) the proportion of C1 neurons containing PACAP mRNA and 2) responsiveness to intrathecal PACAP-38. We further investigated whether intrathecal infusion of the PACAP antagonist, PACAP(6–38), reduces the hypertension in the SHR. The principal findings are that 1) the proportion of PACAP mRNA-containing C1 neurons is not different between normotensive and hypertensive rats, 2) intrathecal PACAP-38 causes a strain-dependent, sustained sympathoexcitation and tachycardia with variable effects on mean arterial pressure in normotensive and hypertensive rats, and 3) PACAP(6–38) effectively attenuated the effects of intrathecal PACAP-38, but had no effect alone, on any baseline variables. This finding indicates that PACAP-38 is not tonically released in the spinal cord of rats. A role for PACAP in hypertension in conscious rats remains to be determined.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3