Heme oxygenase-1 induction modulates hypoxic pulmonary vasoconstriction through upregulation of ecSOD

Author:

Ahmad Mansoor1,Zhao Xiangmin1,Kelly Melissa R.1,Kandhi Sharath1,Perez Oscar1,Abraham Nader G.2,Wolin Michael S.1

Affiliation:

1. Departments of 1Physiology and

2. Pharmacology, New York Medical College, Valhalla, New York

Abstract

Endothelium-denuded bovine pulmonary arteries (BPA) contract to hypoxia through a mechanism potentially involving removing a superoxide-derived hydrogen peroxide-mediated relaxation. BPA organ cultured for 24 h with 0.1 mM cobalt chloride (CoCl2) to increase the expression and activity of heme oxygenase-1 (HO-1) is accompanied by a decrease in 5 μM lucigenin-detectable superoxide and an increase in horseradish peroxidase-luminol detectable peroxide levels. Force development to KCl in BPA was not affected by increases in HO-1, but the hypoxic pulmonary vasoconstriction (HPV) response was decreased. Organ culture with a HO-1 inhibitor (10 μM chromium mesoporphyrin) reversed the effects of HO-1 on HPV and peroxide. Treatment of HO-1-induced BPA with extracellular catalase resulted in reversal of the attenuation of HPV without affecting the force development to KCl. Increasing intracellular peroxide scavenging with 0.1 mM ebselen increased force development to KCl and partially reversed the decrease in HPV seen on induction of HO-1. HO-1 induction increases extracellular (ec) superoxide dismutase (SOD) expression without changing Cu,Zn-SOD and Mn-SOD levels. HO-1-induced BPA rings treated with the copper chelator 10 mM diethyldithiocarbamate to inactivate ecSOD and Cu,Zn-SOD showed increased superoxide and decreased peroxide to levels equal to non-HO-1-induced rings, whereas the addition of SOD to freshly isolated BPA rings attenuated HPV similar to HO-1 induction with CoCl2. Therefore, HO-1 induction in BPA increases ecSOD expression associated with enhanced generation of peroxide in amounts that may not be adequately removed during hypoxia, leading to an attenuation of HPV.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3