mitoKATP channel activation in the postanoxic developing heart protects E-C coupling via NO-, ROS-, and PKC-dependent pathways

Author:

Sarre Alexandre,Lange Norbert,Kucera Pavel,Raddatz Eric

Abstract

Whereas previous studies have shown that opening of the mitochondrial ATP-sensitive K+ (mitoKATP) channel protects the adult heart against ischemia-reperfusion injury, it remains to be established whether this mechanism also operates in the developing heart. Isolated spontaneously beating hearts from 4-day-old chick embryos were subjected to 30 min of anoxia followed by 60 min of reoxygenation. The chrono-, dromo-, and inotropic disturbances, as well as alterations of the electromechanical delay (EMD), reflecting excitation-contraction (E-C) coupling, were investigated. Production of reactive oxygen species (ROS) in the ventricle was determined using the intracellular fluorescent probe 2′,7′-dichlorofluorescin (DCFH). Effects of the specific mitoKATP channel opener diazoxide (Diazo, 50 μM) or the blocker 5-hydroxydecanoate (5-HD, 500 μM), the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME, 50 μM), the antioxidant N-(2-mercaptopropionyl)glycine (MPG, 1 mM), and the PKC inhibitor chelerythrine (Chel, 5 μM) on oxidative stress and postanoxic functional recovery were determined. Under normoxia, the baseline parameters were not altered by any of these pharmacological agents, alone or in combination. During the first 20 min of postanoxic reoxygenation, Diazo doubled the peak of ROS production and, interestingly, accelerated recovery of ventricular EMD and the PR interval. Diazo-induced ROS production was suppressed by 5-HD, MPG, or l-NAME, but not by Chel. Protection of ventricular EMD by Diazo was abolished by 5-HD, MPG, l-NAME, or Chel, whereas protection of the PR interval was abolished by l-NAME exclusively. Thus pharmacological opening of the mitoKATP channel selectively improves postanoxic recovery of cell-to-cell communication and ventricular E-C coupling. Although the NO-, ROS-, and PKC-dependent pathways also seem to be involved in this cardioprotection, their interrelation in the developing heart can differ markedly from that in the adult myocardium.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3