Delineating the guide-wire flow obstruction effect in assessment of fractional flow reserve and coronary flow reserve measurements

Author:

Roy Abhijit Sinha,Banerjee Rupak K.,Back Lloyd H.,Back Martin R.,Khoury Saeb,Millard Ronald W.

Abstract

Hemodynamic analysis was conducted to determine uncertainty in clinical measurements of coronary flow reserve (CFR) and fractional flow reserve (FFR) over pathophysiological conditions in a patient group with coronary artery disease during angioplasty. The vasodilation-distal perfusion pressure (CFR-p̃rh) curve was obtained for 0.35- and 0.46-mm guide wires. Our hypothesis is that a guide wire spanning the lesions elevates the pressure gradient and reduces the flow during hyperemic measurements. Maximal CFR-p̃rh was uniquely determined by the intersection of measured CFR and calculated p̃rh of native and residual epicardial lesions in patients without microvascular disease, during angioplasty. Extrapolation of the linear curve gave a zero-coronary flow mean pressure (p̃zf) of ∼20 mmHg and a corresponding p̃rh of 55 mmHg in the native lesions, which coincided with the level that causes ischemia in human hearts. On this linear curve, values of CFR and FFRmyo (pathophysiological condition) and CFRg and FFRmyog (in the presence of the guide wire) were obtained in native and residual lesions. A strong linear correlation was found between CFR and CFRg [CFR = CFRg × 0.689 + 1.271 ( R2 = 0.99) for 0.46 mm and CFR = CFRg × 0.757 + 1.004 ( R2 = 0.99) for 0.35 mm] and between FFRmyo and FFRmyog [FFRmyo = FFRmyog × 0.737 + 0.263 ( R2 = 0.99) for 0.46 mm and FFRmyo = FFRmyog × 0.790 + 0.210 ( R2 = 0.99) for 0.35 mm]. This study establishes a strong correlation between CFR and CFRg and between FFRmyo and FFRmyog, which could be used to obtain the true state of occlusion in the coronary artery during angioplasty.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3