Dynamics of myocardial oxygen consumption and coronary vascular resistance

Author:

Belloni F. L.,Sparks H. V.

Abstract

Coronary vascular resistance may be regulated in part by substances whose concentrations are determined by or reflect the rate of myocardial oxygen consumption (e.g., adenosine, vessel wall PO2). We tested this hypothesis by comparing the time course of changes in myocardial oxygen consumption and coronary vascular resistance following 20 beat/min changes in heart rate. Main left coronary arteries of in situ dog hearts were perfused with blood at constant flow. Coronary sinus O2 content was monitored continuously with a densitometer and reflected the time course of changes in oxygen consumption and also the effects of vascular transit between tissue and the coronary sinus. These transit effects were estimated from dye transit curves and added to the time course of changes in coronary perfusion pressure which was proportional to coronary vascular resistance at constant flow. Coronary sinus O2 content changes preceded the adjusted time course of vascular resistance. This supports the hypothesis that coronary vascular resistance is regulated in part by factors closely linked to oxidative metabolism.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local Regulation of Microvascular Perfusion;Comprehensive Physiology;2008-12

2. Local Regulation of Microvascular Perfusion;Microcirculation;2008

3. Coronary microcirculatory vasoconstriction is heterogeneously distributed in acutely ischemic myocardium;American Journal of Physiology-Heart and Circulatory Physiology;2005-05

4. Baroreflex stabilization of the double (pressure-rate) product at 0.05 Hz in conscious rabbits;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2002-06-01

5. Clinical evidence for myocardial derecruitment downstream from severe stenosis: pressure-flow control interaction;American Journal of Physiology-Heart and Circulatory Physiology;2000-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3