Interaction of angiogenic microvessels with the extracellular matrix

Author:

Krishnan Laxminarayanan,Hoying James B.,Nguyen Hoa,Song Helen,Weiss Jeffrey A.

Abstract

The extracellular matrix (ECM) plays a critical role in angiogenesis by providing biochemical and positional cues, as well as by mechanically influencing microvessel cell behavior. Considerable information is known concerning the biochemical cues relevant to angiogenesis, but less is known about the mechanical dynamics during active angiogenesis. The objective of this study was to characterize changes in the material properties of a simple angiogenic tissue before and during angiogenesis. During sprouting, there was an overall decrease in tissue stiffness followed by an increase during neovessel elongation. The fall in matrix stiffness coincided with peak matrix metalloproteinase mRNA expression and elevated proteolytic activity. An elevated expression of genes for ECM components and cell-ECM interaction molecules and a subsequent drop in proteolytic activity (although enzyme levels remained elevated) coincided with the subsequent stiffening. The results of this study show that the mechanical properties of a scaffold tissue may be actively modified during angiogenesis by the growing microvasculature.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Reference46 articles.

1. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis

2. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization

3. Castellon R, Caballero S, Hamdi HK, Atilano SR, Aoki AM, Tarnuzzer RW, Kenney MC, Grant MB, Ljubimov AV. Effects of tenascin-C on normal and diabetic retinal endothelial cells in culture. Invest Ophthalmol Vis Sci 43: 2758–2766, 2002.

4. Signal transduction by vascular endothelial growth factor receptors

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3