Spatial Configurations of 3D Extracellular Matrix Collagen Density and Anisotropy Simultaneously Guide Angiogenesis

Author:

LaBelle Steven A.ORCID,Poulson A. Marsh,Maas Steve A.,Rauff Adam,Ateshian Gerard A.,Weiss Jeffrey A.ORCID

Abstract

Extracellular matrix (ECM) collagen density and fibril anisotropy are thought to affect the development of new vasculatures during pathologic and homeostatic angiogenesis. Computational simulation is emerging as a tool to investigate the role of matrix structural configurations on cell guidance. However, prior computational models have only considered the orientation of collagen as a model input. Recent experimental evidence indicates that cell guidance is simultaneously influenced by the direction and intensity of alignment (i.e., degree of anisotropy) as well as the local collagen density. The objective of this study was to explore the role of ECM collagen anisotropy and density during sprouting angiogenesis through simulation in the AngioFE and FEBio modeling frameworks. AngioFE is a plugin for FEBio (Finite Elements for Biomechanics) that simulates cell-matrix interactions during sprouting angiogenesis. We extended AngioFE to represent ECM collagen as deformable 3D ellipsoidal fibril distributions (EFDs). The rate and direction of microvessel growth were modified to depend simultaneously on the ECM collagen anisotropy (orientation and degree of anisotropy) and density. The sensitivity of growing neovessels to these stimuli was adjusted so that AngioFE could reproduce the growth and guidance observed in experiments where microvessels were cultured in collagen gels of varying anisotropy and density. We then compared outcomes from simulations using EFDs to simulations that used AngioFE’s prior vector field representation of collagen anisotropy. We found that EFD simulations were more accurate than vector field simulations in predicting experimentally observed microvessel guidance. Predictive simulations demonstrated the ability of anisotropy gradients to recruit microvessels across short and long distances relevant to wound healing. Further, simulations predicted that collagen alignment could enable microvessels to overcome dense tissue interfaces such as tumor-associated collagen structures (TACS) found in desmoplasia and tumor-stroma interfaces. This approach can be generalized to other mechanobiological relationships during cell guidance phenomena in computational settings.

Funder

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference66 articles.

1. Matrix anisotropy promotes angiogenesis in a density-dependent manner;SA LaBelle;American Journal of Physiology-Heart and Circulatory Physiology,2022

2. Extracellular matrix density regulates the rate of neovessel growth and branching in sprouting angiogenesis;LT Edgar;PLoS One,2014

3. Cell-generated traction forces and the resulting matrix deformation modulate microvascular alignment and growth during angiogenesis;CJ Underwood;Am J Physiol Heart Circ Physiol,2014

4. Stromal Cells Promote Neovascular Invasion Across Tissue Interfaces;HA Strobel;Frontiers in Physiology,2020

5. Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis;AL Bauer;PLoS Comput Biol,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3