Redistribution of myocardial fiber strain and blood flow by asynchronous activation

Author:

Prinzen F. W.1,Augustijn C. H.1,Arts T.1,Allessie M. A.1,Reneman R. S.1

Affiliation:

1. Department of Physiology, University of Limburg, Maastricht, TheNetherlands.

Abstract

Hearts of 11 anesthetized open-chest dogs were paced from the right atrium (RA), right ventricular outflow tract (RVOT), and left ventricular apex (LVA). Maps of the sequence of electrical activation (192 electrodes), fiber strain (video technique), and blood flow (microsphere technique) in the epicardial layers were obtained from a 15- to 20-cm2 area of the anterior left ventricular wall. Electrical asynchrony in this area was 10 +/- 5 (RA), 52 +/- 12 (RVOT), and 30 +/- 16 ms (LVA, mean +/- SD, P less than 0.05 for RVOT and LVA compared with RA). Epicardial fiber strain during the ejection phase was uniformly distributed during RA pacing. However, during ventricular pacing it ranged from 13 +/- 33% (RVOT) and 23 +/- 29% (LVA) of the value during RA pacing in early-activated regions to 268 +/- 127% (RVOT) and 250 +/- 130% (LVA) of this value in late-activated regions. Epicardial blood flow ranged from 81 +/- 22% (RVOT) and 79 +/- 23% (LVA) in early-activated regions to 142 +/- 42% (RVOT) and 126 +/- 22% (LVA) in late activated regions. In all above values P less than 0.05 compared with RA. During RVOT pacing, gradients of epicardial electrical activation time, fiber strain, and blood flow pointed in the same direction. Compared with RVOT pacing, during LVA pacing all gradients were opposite in direction, and the gradients of electrical activation time and blood flow appeared to be smaller. These results indicate that timing of electrical activation is an important determinant for the distribution of fiber strain and blood flow in the left ventricular wall.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 257 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3