Affiliation:
1. Department of Mechanical Engineering and
2. Cancer Institute, University of Nevada, Las Vegas, Las Vegas, Nevada 89154
Abstract
To investigate the ultrastructural mechanisms of acute microvessel hyperpermeability by vascular endothelial growth factor (VEGF), we combined a mathematical model ( J Biomech Eng 116: 502–513, 1994) with experimental data of the effect of VEGF on microvessel hydraulic conductivity ( L p) and permeability of various-sized solutes. We examined the effect of VEGF on microvessel permeability to a small solute (sodium fluorescein, Stokes radius 0.45 nm), an intermediate solute (α-lactalbumin, Stokes radius 2.01 nm), and a large solute [albumin (BSA), Stokes radius 3.5 nm]. Exposure to 1 nM VEGF transiently increased apparent permeability to 2.3, 3.3, and 6.2 times their baseline values for sodium fluorescein, α-lactalbumin, and BSA, respectively, within 30 s, and all returned to control within 2 min. On the basis of L p (DO Bates and FE Curry. Am J Physiol Heart Circ Physiol 271: H2520–H2528, 1996) and permeability data, the prediction from the model suggested that the most likely structural changes in the interendothelial cleft induced by VEGF would be a ∼2.5-fold increase in its opening width and partial degradation of the surface glycocalyx.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献