H2O2 activation of HSP25/27 protects desmin from calpain proteolysis in rat ventricular myocytes

Author:

Blunt Bradford C.,Creek Aaron T.,Henderson DeAnna C.,Hofmann Polly A.

Abstract

Ischemia-reperfusion-induced Ca2+ overload results in activation of calpain-1 in the heart. Calpain-dependent proteolysis contributes to myocardial dysfunction and cell death. Previously, preischemic treatment with low doses of H2O2 was shown to improve postischemic function and reduce myocardial infarct size. Our aim was to determine the mechanism by which H2O2 protects the heart. We hypothesized that H2O2 causes the activation of p38 MAPK which initiates translocation of heat shock protein 25/27 (HSP25/27) to the myofilament Z disk. We further hypothesized that HSP25/27 shields structural proteins, particularly desmin, from calpain-induced proteolysis. To address this hypothesis, we first determined that an ischemia-reperfusion-induced decrease in desmin content could be blocked by H2O2 pretreatment of hearts from rats. We next determined that ventricular myocytes that underwent Ca2+ overload also demonstrated a calpain-dependent disruption of desmin that could be reduced by H2O2/p38 MAPK activation. Furthermore, myocytes acutely treated with H2O2 exhibited a decrease in cleavage of desmin upon exposure to exogenous calpain-1 compared with myocytes not pretreated with H2O2. The H2O2-induced attenuation of desmin degradation by calpain-1 was blocked by inhibition of p38 MAPK. In a final series of experiments, we demonstrated that cardiac myofilaments exposed to recombinant phosphorylated HSP27, but not nonphosphorylated HSP27, had a significant reduction in the calpain-induced degradation of desmin compared with non-HSP27-treated myofilaments. These findings are consistent with the hypothesis that H2O2-induced activation of p38 MAPK and subsequent HSP25/27 translocation attenuates desmin degradation brought about by calpain-1 activation in ischemia-reperfused hearts.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3