Affiliation:
1. Cardiovascular Development Research Program, Department of Pediatrics, University of Kentucky, Lexington, Kentucky 40536-0298
Abstract
Mechanical load influences embryonic ventricular growth, morphogenesis, and function. However, little is known about changes in regional passive ventricular properties during the development of altered mechanical loading conditions in the embryo. We tested the hypothesis that regional mechanical loads are a critical determinant of embryonic ventricular passive properties. We measured biaxial passive right and left ventricular (RV and LV, respectively) stress-strain relations in chick embryos at Hamburger-Hamilton stages 21 and 27after conotruncal banding (CTB) to increase biventricular pressure load or left atrial ligation (LAL) to reduce LV volume load and increase RV volume load. In the RV, wall strains at end-diastolic (ED) pressure normalized whereas ED stresses increased after either CTB or LAL during development. In the left ventricle, both ED strain and stress normalized after CTB, whereas both remained reduced with significantly increased myocardial stiffness after LAL. These results suggest that the embryonic ventricle adapts to chronically altered mechanical loading conditions by changing specific RV and LV passive properties. Thus regional mechanical load has a critical role during cardiogenesis.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献