Mechanical regulation of myocardial growth during volume-overload hypertrophy in the rat

Author:

Emery J. L.1,Omens J. H.1

Affiliation:

1. Department of Bioengineering, University of California, San Diego, LaJolla 92093-0613, USA.

Abstract

Alteration of hemodynamic preload leads to ventricular growth and remodeling, but the specific diastolic mechanical factors, such as myocardial stress or strain, that regulate the hypertrophic response remain unclear. To assess the relative importance of these factors in a model of volume-overload hypertrophy, we measured passive pressure-strain relationships by using ultrasonic crystals in the left ventricle (LV) midwall of rats at 1, 2, 4, and 6 wk after an arteriovenous fistula (AVF). Compared with baseline, mean strain in the muscle fiber direction (Eff) at an end-diastolic (ED) pressure corresponding to the acute elevation in hemodynamic load with AVF increased by 96% from 0.056 +/- 0.028 to 0.110 +/- 0.044 (P < 0.05). Eff returned to normal levels after 6 wk of remodeling (0.045 +/- 0.029). Fiber stress at ED pressure, computed from an optimized prolate spheroidal finite-element model for each group, increased by 82% in the acute response, rose to 5.8 times normal level at 1 wk, and remained substantially elevated (5.2 times) at 6 wk. Concurrently, stiffness in both fiber and cross-fiber directions was increased in all groups and reached a maximum of 10 times normal values by 6 wk. Collagen area fraction, as measured in picrosirius-stained sections of the LV free wall, was not different between 6 wk and control. Thus we conclude that ED strain, rather than stress, is normalized during volume hypertrophy through changes in ventricular geometry and wall stiffness that appear unrelated to changes in collagen content.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3