Cardiac electrophysiology and the susceptibility to sustained ventricular tachycardia in intact, conscious mice

Author:

Lujan Heidi L.1,DiCarlo Stephen E.1

Affiliation:

1. Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan

Abstract

Cardiac electrophysiological dysfunction is a major cause of death in humans. Accordingly, electrophysiological testing is routinely performed in intact, conscious, humans to evaluate arrhythmias and disorders of cardiac conduction. However, to date, in vivo electrophysiological studies in mice are limited to anesthetized open-chest or closed-chest preparations. However, cardiac electrophysiology in anesthetized mice or mice with surgical trauma may not adequately represent what occurs in conscious mice. Accordingly, an intact, conscious murine model of cardiac electrophysiology has the potential to be of major importance for advancing the concepts and methods that drive cardiovascular therapies. Therefore, we describe, for the first time, the use of an intact, conscious, murine model of cardiac electrophysiology. The conscious mouse model permits measurements of atrioventricular interval, sinus cycle length, sinus node recovery time (SNRT), SNRT corrected for spontaneous sinus cycle, Wenckebach cycle length, the ventricular effective refractory period (VERP) and the electrical stimulation threshold to induce sustained ventricular tachyarrhythmias in an intact, complex model free of the confounding influences of anesthetics and surgical trauma. This is an important consideration because anesthesia and surgical trauma markedly reduced cardiac output and heart rate as well as altered cardiac electrophysiology parameters. Most importantly, anesthesia and surgical trauma significantly increased the VERP and virtually eliminated the ability to induce sustained ventricular tachyarrhythmias. Accordingly, the methodology allows for the accurate documentation of cardiac electrophysiology in complex, conscious mice and may be adopted for advancing the concepts and ideas that drive cardiovascular research.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3