Electrophysiological phenotyping in genetically engineered mice

Author:

Berul Charles I.1

Affiliation:

1. Department of Cardiology, Children’s Hospital-Boston, Harvard Medical School, Boston, Massachusetts 02115

Abstract

Advances in transgene and gene targeting technology have enabled sophisticated manipulation of the mouse genome, providing important insights into the molecular mechanisms underlying cardiac conduction, arrhythmogenesis, and sudden cardiac death. The mouse is currently the principal mammalian model for studying biological processes, particularly related to cardiac pathophysiology. Murine models have been engineered harboring gene mutations leading to inherited structural and electrical disorders of the heart due to transcription factor mutations, connexin protein defects, and G protein and ion channelopathies. These mutations lead to phenotypes reminiscent of human clinical disease states including congenital heart defects, cardiomyopathies, and long-QT syndrome, creating models of human electrophysiological disease. Functional analyses of the underlying molecular mechanisms of resultant phenotypes require appropriate and sophisticated experimental methodology. This paper reviews current in vivo murine electrophysiology study techniques and genetic mouse models pertinent to human arrhythmia disorders.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3