Dynamic filling parameters in patients with atrial fibrillation: differentiating rhythm induced from ventilation-induced variations in pulse pressure

Author:

Wyffels Piet A. H.1,Van Heuverswyn Frederic2,De Hert Stefan1,Wouters Patrick F.1

Affiliation:

1. Department of Anesthesiology, Ghent University Hospital, Ghent, Belgium; and

2. Department of Cardiology, Ghent University Hospital, Ghent, Belgium

Abstract

In patients with sinus rhythm, the magnitude of mechanical ventilation (MV)-induced changes in pulse pressure (PP) is known to predict the effect of fluid loading on cardiac output. This approach, however, is not applicable in patients with atrial fibrillation (AF). We propose a method to isolate this effect of MV from the rhythm-induced chaotic changes in PP in patients with AF. In 10 patients undergoing pulmonary vein ablation for treatment of AF under general anesthesia, ECG and PP waveforms were analyzed during apnea (T1) and during MV at tidal volumes of 8 ml/kg (T2) and 12 ml/kg (T3), respectively. In a first step, three mathematical models were compared in their ability to predict individual PP at T1. The best-fitting model was then selected as the reference to quantify the effects of MV on PP in these patients. A local polynomial regression model based on two preceding RR intervals (LOC2) was found to be superior over the quadratic models to predict PP. LOC2 was therefore selected to quantify variations in PP induced by MV. During T2 and T3, magnitude of PP deviations was related with the amplitude of tidal volume [mean bias error (SD) of −5 (6) and −8 (7) mmHg for T2 and T3, respectively; P = 0.003 repeated-measures ANOVA]. We conclude that LOC2 most accurately predicted rhythm-induced variations in PP. MV-induced deviations in PP can be quantified and may therefore provide a method to study cardiopulmonary interactions in the presence of arrhythmia.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3