Radius-dependent decline of performance in isolated cardiac muscle does not reflect inadequacy of diffusive oxygen supply

Author:

Han June-Chiew1,Taberner Andrew J.12,Kirton Robert S.1,Nielsen Poul M. F.12,Archer Rosalind2,Kim Nari13,Loiselle Denis S.14

Affiliation:

1. Auckland Bioengineering Institute,

2. Department of Engineering Science, and

3. Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea

4. Department of Physiology, The University of Auckland, Auckland, New Zealand; and

Abstract

The study of cardiac energetics commonly involves the use of isolated muscle preparations (papillary muscles or trabeculae carneae). Their contractile performance has been observed to vary inversely with thickness. This inverse dependence has been attributed, almost without exception, to inadequate diffusion of oxygen into the centers of muscles of large diameter. It is thus commonly hypothesized that the radius-dependent diminution of performance reflects the development of an anoxic core. We tested this hypothesis theoretically by solving a modification of the diffusion equation, in which the rate of oxygen consumption is a sigmoidal function of the partial pressure of oxygen. The model demonstrates that sufficiently thick muscles, operating at sufficiently high rates of oxygen demand or sufficiently low ambient partial pressures of oxygen, will indeed show diminished energetic performance, whether indirectly indexed as stress (force per cross-sectional area) development or as the rate of heat production. However, such simulated behavior requires the adoption of extreme parameter values, often differing by an order of magnitude from their experimental equivalents. We thus conclude that the radius-dependent diminution of muscle performance in vitro cannot be attributed entirely to an insufficient supply of oxygen via diffusion.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3