Affiliation:
1. Department of Physiology, Monash University, Clayton, Victoria 3168, Australia
Abstract
The mechanical efficiency of rat cardiac muscle was determined using a contraction protocol involving cyclical, sinusoidal length changes and phasic stimulation at physiological frequencies (1–4 Hz). Experiments were performed in vitro (27°C) using rat left ventricular papillary muscles. Efficiency was determined from measurements of the net work performed and enthalpy produced by muscles during a series of 40 contractions. Net mechanical efficiency was defined as the percentage of the total, suprabasal enthalpy output that appeared as mechanical work. Maximum efficiency was ∼15% at contraction frequencies between 2 and 2.5 Hz. At lower and higher frequencies, efficiency was ∼10%. Enthalpy output per cycle was independent of cycle frequency at all but the highest frequency used. The basis of the high efficiency between 2 and 2.5 Hz was that work output was also greatest at these frequencies. At these frequencies, the duration of the applied length change was well matched to the kinetics of force generation, and active force generation occurred throughout the shortening period.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献