Nonlinear methods of biosignal analysis in assessing terbutaline-induced heart rate and blood pressure changes

Author:

Kuusela Tom A.1,Jartti Tuomas T.2,Tahvanainen Kari U. O.3,Kaila Timo J.45

Affiliation:

1. Department of Physics, University of Turku, 20014 Turku;

2. Department of Pediatrics, Turku University Central Hospital, 20520 Turku;

3. Department of Clinical Physiology, Kuopio University Hospital, 70211 Kuopio;

4. Department of Clinical Pharmacology, Tampere University, 33521 Tampere; and

5. Tampere University Hospital, 33014 Tampere, Finland

Abstract

The aim of this study was to characterize how different nonlinear methods characterize heart rate and blood pressure dynamics in healthy subjects at rest. The randomized, placebo-controlled crossover study with intravenous terbutaline was designed to induce four different stationary states of cardiovascular regulation system. The R-R interval, systolic arterial blood pressure, and heart rate time series were analyzed with a set of methods including approximate entropy, sample entropy, Lempel-Ziv entropy, symbol dynamic entropy, cross-entropy, correlation dimension, fractal dimensions, and stationarity test. Results indicate that R-R interval and systolic arterial pressure subsystems are mutually connected but have different dynamic properties. In the drug-free state the subsystems share many common features. When the strength of the baroreflex feedback loop is modified with terbutaline, R-R interval and systolic blood pressure lose mutual synchrony and drift toward their inherent state of operation. In this state the R-R interval system is rather complex and irregular, but the blood pressure system is much simpler than in the drug-free state.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3