Affiliation:
1. Department of Clinical Research, Gemeinschaftskrankenhaus, D-58313 Herdecke;
2. Research and Development Center for Microtherapy, D-44799 Bochum, Germany
Abstract
Dynamic aspects of R-R intervals have often been analyzed by means of linear and nonlinear measures. The goal of this study was to analyze binary sequences, in which only the dynamic information is retained, by means of two different aspects of regularity. R-R interval sequences derived from 24-h electrocardiogram (ECG) recordings of 118 healthy subjects were converted to symbolic binary sequences that coded the beat-to-beat increase or decrease in the R-R interval. Shannon entropy was used to quantify the occurrence of short binary patterns (length N = 5) in binary sequences derived from 10-min intervals. The regularity of the short binary patterns was analyzed on the basis of approximate entropy (ApEn). ApEn had a linear dependence on mean R-R interval length, with increasing irregularity occurring at longer R-R interval length. Shannon entropy of the same sequences showed that the increase in irregularity is accompanied by a decrease in occurrence of some patterns. Taken together, these data indicate that irregular binary patterns are more probable when the mean R-R interval increases. The use of surrogate data confirmed a nonlinear component in the binary sequence. Analysis of two consecutive 24-h ECG recordings for each subject demonstrated good intraindividual reproducibility of the results. In conclusion, quantification of binary sequences derived from ECG recordings reveals properties that cannot be found using the full information of R-R interval sequences.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献