Affiliation:
1. Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, Missouri 63110
Abstract
We performed the first large-scale ( n = 501), quantitative study of horizontal disparity tuning in the middle temporal (MT) visual area of alert, fixating macaque monkeys. Using random-dot stereograms, we quantified the direction tuning, speed tuning, horizontal disparity tuning, and size tuning of each neuron. The vast majority (93%) of MT neurons were significantly tuned for horizontal disparity. Although disparity tuning was generally quite robust, the average disparity sensitivity of MT neurons was significantly weaker than their direction or speed sensitivity as quantified using both an index of response modulation and an index of signal-to-noise ratio. Disparity tuning was not correlated with direction or size tuning but tended to be broader and weaker for neurons that preferred faster speeds of motion. By comparison with recent studies, we find that disparity selectivity in MT is substantially stronger than that seen in either primary visual cortex (V1) or area V4. In addition, MT neurons are more broadly tuned for disparity than V1 neurons at comparable eccentricities. Disparity tuning curves are very well described by Gabor functions for >80% of MT neurons. The distribution of Gabor phases shows clear bimodality, indicating that MT neurons tend to have odd-symmetric disparity tuning (unlike neurons in V1). The preferred disparities were more strongly correlated with the phase parameter of the Gabor function than with the positional offset parameter. In fact, for neurons with preferred disparities close to zero, the positional offset tended to oppose the phase shift in specifying the disparity preference. We suggest that this result reflects a strategy used to finely distribute the disparity preferences of MT neurons, given the predominance of odd-symmetry and broad tuning.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
252 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献