Review of Electrical Machine Diagnostic Methods Applicability in the Perspective of Industry 4.0

Author:

Asad Bilal1,Vaimann Toomas2,Rassõlkin Anton3,Kallaste Ants2,Belahcen Anouar4

Affiliation:

1. Ph. D. Student, Tallinn University of Technology , Tallinn , Estonia

2. Senior Researcher, Tallinn University of Technology , Tallinn , Estonia

3. Researcher, Tallinn University of Technology , Tallinn , Estonia

4. Professor, Tallinn University of Technology , Tallinn , Estonia

Abstract

Abstract Digitalization of the industrial sector and Industry 4.0 have opened new horizons in many technical fields, including electrical machine diagnostics and operation, as well as machine condition monitoring. This paper addresses a selection of electrical machine diagnostics methods that are applicable for the use in the perspective of Industry 4.0, to be used in hand with cloud environments and the possibilities granted by the Internet of Things. The need for further research and development in the field is pointed out. Some potentially applicable future approaches are presented.

Publisher

Walter de Gruyter GmbH

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. State-of-the-Art Techniques for Fault Diagnosis in Electrical Machines: Advancements and Future Directions;Energies;2023-09-01

2. Comprehensive Overview of Modern Controllers for Synchronous Reluctance Motor;Journal of Electrical and Computer Engineering;2023-08-30

3. Digital Twin Service Unit Development for an EV Induction Motor Fault Detection;2023 IEEE International Electric Machines & Drives Conference (IEMDC);2023-05-15

4. The Edge Application of Machine Learning Techniques for Fault Diagnosis in Electrical Machines;Sensors;2023-02-28

5. Methods for Diagnosing Vehicles by an Operator-Diagnostician;2022 IEEE 63th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON);2022-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3