State-of-the-Art Techniques for Fault Diagnosis in Electrical Machines: Advancements and Future Directions

Author:

Akbar Siddique1ORCID,Vaimann Toomas1ORCID,Asad Bilal12ORCID,Kallaste Ants1ORCID,Sardar Muhammad Usman1ORCID,Kudelina Karolina1ORCID

Affiliation:

1. Department of Electrical Power Engineering and Mechatronics, Tallinn University of Technology, 19086 Tallinn, Estonia

2. Department of Electrical Power Engineering, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan

Abstract

Electrical machines are prone to various faults and require constant monitoring to ensure safe and dependable functioning. A potential fault in electrical machinery results in unscheduled downtime, necessitating the prompt assessment of any abnormal circumstances in rotating electrical machines. This paper provides an in-depth analysis as well as the most recent trends in the application of condition monitoring and fault detection techniques in the disciplines of electrical machinery. It first investigates the evolution of traditional monitoring techniques, followed by signal-based techniques such as spectrum, vibration, and temperature analysis, and the most recent trends in its signal processing techniques for assessing faults. Then, it investigates and details the implementation and evolution of modern approaches that employ intelligence-based techniques such as neural networks and support vector machines. All these applicable and state-of-art techniques in condition monitoring and fault diagnosis aid in predictive maintenance and identification and have the highly reliable operation of a motor drive system. Furthermore, this paper focuses on the possible transformational impact of electrical machine condition monitoring by thoroughly analyzing each of the monitoring techniques, their corresponding pros and cons, their approaches, and their applicability. It offers strong and useful insights into proactive maintenance measures, improved operating efficiency, and specific recommendations for future applications in the field of diagnostics.

Funder

Estonian

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3