GIS-Based Urban Road Network Accessibility Modeling Using MLR, ANN and ANFIS Methods

Author:

Sahitya K. Sai1,Prasad Csrk1

Affiliation:

1. Transportation Division, Department of Civil Engineering, National Institute of Technology , Warangal , Telangana , India

Abstract

Abstract A sustainable transportation system is possible only through an efficient evaluation of transportation network performance. The efficiency of the transport network structure is analyzed in terms of its connectivity, accessibility, network development, and spatial pattern. This study primarily aims to propose a methodology for modeling the accessibility based on the structural parameters of the urban road network. Accessibility depends on the arrangement of the urban road network structure. The influence of the structural parameters on the accessibility is modeled using Multiple Linear Regression (MLR) analysis. The study attempts to introduce two methods of Artificial Intelligence (AI) namely Artificial Neural Networks (ANN) and Adaptive network-based neuro-fuzzy inference system (ANFIS) in modeling the urban road network accessibility. The study also focuses on comparing the results obtained from MLR, ANN and ANFIS modeling techniques in predicting the accessibility. The results of the study present that the structural parameters of the road network have a considerable impact on accessibility. ANFIS method has shown the best performance in modeling the road network accessibility with a MAPE value of 0.287%. The present study adopted Geographical Information Systems (GIS) to quantify, extract and analyze different features of the urban transportation network structure. The combination of GIS, ANN, and ANFIS help in improved decision-making. The results of the study may be used by transportation planning authorities to implement better planning practices in order to improve accessibility.

Publisher

Walter de Gruyter GmbH

Subject

Computer Science Applications,General Engineering

Reference46 articles.

1. 1. Abdulhai, B., Porwal, H., and Recker, W. (1999) Short-Term Freeway Traffic Flow Prediction Using Genetically Optimized Time-Delay-Based Neural Networks. Presented at 78th Annual Meeting of the Transportation Research Board, Washington, D.C. Report for MOU 360, ISSN 1055-1417.

2. 2. Ahmed, Geneidy M.E.I., and David, M.L. (2006) Access to destinations: Development of accessibility measures. In a research report published by Minnesota Department of Transportation, Minnesota.

3. 3. Arora, A., and Pandey, M.K. (2011) Transportation network model and network analysis of road networks. 12th Esri India User Conference 2011.

4. 4. Avika, B., and Lerman. (1977) Disaggregate travel and mobility choice models and measures of accessibility. Behavioural Travel Modelling, eds. Hensherd and Stopher, P., London: Croom Helm, pp.654-679.

5. 5. Bao-ping, C., and Zeng-qiang, M.A. (2009) Short-term Traffic Flow Prediction Based on ANFIS. In: International Conference on Communication Software and Networks, DOI 10.1109/ICCSN.2009.140.10.1109/ICCSN.2009.140

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3